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Self-diffusion coefficients and binary Maxwell–Stefan diffusion coefficients were
determined by equilibrium molecular dynamics simulations with the Green–
Kubo method. The study covers five pure fluids: neon, argon, krypton, xenon,
and methane and three binary mixtures: argon+krypton, argon+xenon, and
krypton+xenon. The fluids are modeled by spherical Lennard-Jones pair-
potentials, with parameters which were determined solely on the basis of vapor-
liquid equilibrium data. The predictions of the self-diffusion coefficients agree
within 5% for gas state points and about 10% for liquid state points. The
Maxwell–Stefan diffusion coefficients are predicted within 10%. A test of
Darken’s model shows good agreement.
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1. INTRODUCTION

Diffusion plays an important role in many chemical processes, such as
catalysis or adsorption. On the other hand, the measurement of diffusion
coefficients is a time consuming and difficult task [1]. Molecular simula-
tion offers the possibility to straightforwardly determine diffusion coeffi-
cients on the basis of a given molecular model. Both self-diffusion coeffi-
cients and binary Maxwell–Stefan (MS) diffusion coefficients can be
obtained by non-equilibrium molecular dynamics (NEMD) or equilibrium
molecular dynamics (EMD). In this work, EMD is chosen.



From the pioneering work of Alder and Wainwright with hard spheres
[2, 3], the simulation of diffusion coefficients has been an area of contin-
uous research. There are several contributions in which self-diffusion coef-
ficients [4–6], binary [7–12] and ternary diffusion coefficients [13, 14] for
noble gases, methane, and mixtures of these are calculated. Less frequently,
investigations with multi-center Lennard-Jones models, e.g., mixtures of
CH4+SF6 [15] and CH4+CF4 [16], or polar fluids [17, 18], have been
performed. With the exception of Refs. 5 and 6, all investigations from the
literature cover only diffusion coefficients in the liquid phase and only for a
limited range of state points.

This is the aim of the present work in which, as a first step, only
simple fluids are considered. Self-diffusion coefficients for five pure fluids:
neon, argon, krypton, xenon, and methane (both liquid and gas) and three
binary mixtures: argon+krypton, argon+xenon, and krypton+xenon
(gas) are predicted based on molecular models from the literature and
compared with experimental data. The pure component parameters of
these models were determined from vapor-liquid equilibrium data alone
[19]. Binary mixtures were modeled using one adjustable parameter for the
unlike interaction which was fitted to vapor-pressure data of the mixtures
[20, 21]. Throughout the present work, for the molar mass the standard
value from the literature is used [22]. The simulation results on diffusion
coefficients from the present work are therefore predicted from vapor-
liquid equilibria alone and obtained without any adjustment to diffusion or
other transport data. The studied systems are those for which both molec-
ular models and experimental data were available.

2. METHOD

2.1. Molecular Models

In this work, only noble gases and methane are considered, so that the
description of the molecular interactions by the Lennard-Jones 12-6 (LJ)
potential is sufficient and physically meaningful. The LJ potential u is
defined by

uij(r)=4Eij
51sij

r
212

−1sij

r
266 , (1)

where i and j are the species indices, sij is the LJ size parameter, Eij is the
LJ energy parameter, and r is the center-center distance between two mol-
ecules. Pure substance parameters sii and Eii are taken from Ref. 19 as
given in Table I. They were adjusted by Vrabec et al. [19] to experimental
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Table I. Potential Model Parameters for the Pure Fluids Used in this Worka, b

Fluid s (Å) E/kB (K) M (g · mol−1)

Neon 2.8010 33.921 20.180
Argon 3.3952 116.79 39.948
Krypton 3.6274 162.58 83.8
Xenon 3.9011 227.55 131.29
Methane 3.7281 148.55 16.043

a Values taken from Ref. 19.
b The molar mass M was taken from Ref. 22.

pure substance vapor-liquid equilibrium data alone. For modeling mix-
tures, parameters for the unlike interactions are needed. Following pre-
vious work [20, 21], they are given by a modified Lorentz–Berthelot com-
bination rule

s12=
(s11+s22)

2
, (2)

and

E12=t `E11E22 , (3)

where t is an adjustable binary interaction parameter. This parameter
allows an accurate description of the binary mixture data [20, 21] and was
determined by an adjustment to one experimental vapor-liquid equilibrium
state point. As for the mixture krypton+xenon, no binary interaction
parameter is available, so t=1 was assumed. The binary interaction
parameters are listed in Table II.

2.2. Diffusion Coefficients

Diffusion coefficients can be calculated by equilibrium molecular
dynamics through the Green–Kubo formalism [23, 24]. In this formalism,

Table II. Binary Interaction Parameters for the
Binary Mixtures Taken from Ref. 21

Mixture t

Argon+Krypton 0.988
Argon+Xenon 1.000
Krypton+Xenon 0.989
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transport coefficients are related to integrals of time-correlation functions.
There are various methods to relate transport coefficients to time-correla-
tion functions; a good review is available [25]. The self-diffusion coeffi-
cient Di is given by [13]

Di=
1

3Ni
F

.

0
dt 7 C

Ni

k=1
vk

i (0) · vk
i (t)8 , (4)

where vk
i (t) expresses the velocity vector of molecule k of species i and the

notation O · · ·P denotes the ensemble average. Equation (4) yields the self-
diffusion coefficient for component i averaging over Ni molecules. The
expression for the binary Maxwell–Stefan diffusion coefficient Ð12 is given
by [13]

Ð12=
x2

3N1

1x1M1+x2M2

x2M2

22

F
.

0
dt 7 C

N1

k=1
v i

1(0) · C
N1

k=1
v i

1(t)8 , (5)

where Mi denotes the molar mass of molecules of species i, N1 the number
of molecules of species 1, and x1 and x2 are the mole fractions.

To compare MS diffusion coefficients to available experimental data,
it is necessary to transform the MS diffusion coefficients to Fick diffusion
coefficients. There is a direct relation between binary MS diffusion coeffi-
cients Ð12, and binary Fick diffusion coefficients D12 [26], which is given
by

D12=Ð12Q, (6)

with

Q=
x1

kBT
1“m1

“x1

2
T, p

, (7)

where m1 is the chemical potential of species 1, kB is the Boltzmann con-
stant, and T is the temperature.

Because the present simulations provide both binary MS diffusion
coefficients and self-diffusion coefficients, it is possible to test the often
used model of Darken [27, 28]. It gives an estimate of the MS diffusion
coefficient, Ð0

12, from the self-diffusion coefficients of both components in a
binary mixture D1 and D2

Ð0
12=D1x1+D2x2. (8)

178 Fernández, Vrabec, and Hasse



2.3. Simulation Details

The molecular simulations were performed in a cubic box of volume V
containing standard N=500 molecules modeled by the LJ potential. The
cut-off radius was set to rc=5s; standard techniques for periodic boundary
conditions and long-range corrections were used [29]. The simulations
were started with the molecules in a face-center-cubic lattice with random
velocities, the total momentum of the system was set to zero, and Newton’s
equations of motion were solved with a velocity-Verlet algorithm [29]. The
time step for this algorithm was set to Dt `E1/m1/s1=0.001 for liquid
and 0.01 for gas state points. The diffusion coefficients were calculated in a
NVE ensemble, using Eqs. (4) and (5). The relative fluctuation in the total
energy in the NVE ensemble was less than 10−3 for the longest run, which
yields a temperature drift of less than 0.5 K. The simulations are initiated
in a NVT ensemble until equilibrium at the desired density and tempera-
ture is reached. 25 000 time steps were used for that equilibration. Once the
equilibrium is reached, the thermostat is turned off, and then the NVE
ensemble is invoked. The experimental data which were used for compari-
son to our simulations are often reported at given pressure and tempera-
ture. In these cases, a prior isobaric-isothermal NpT simulation [30] was
performed, from which the corresponding densities for the NVE ensemble
were taken. The statistical uncertainty of the diffusion coefficients was
estimated with the standard block average technique [31].

The self-diffusion coefficient is a property related to one molecule. It is
possible to obtain very good statistics with a few independent velocity
autocorrelation functions (VACF). The self-diffusion coefficients were
calculated by averaging over 200 independent VACF each with 500 mole-
cules, i.e., a total of 105 VACF. For gas densities, the VACF decays very
slowly and therefore long simulation runs were necessary in order to
achieve the VACF decay and hence independent time-origins. Here, a
compromise between simulation time and time-origin independence had to
be made. In order to keep the simulation time low, and following the work
of Schoen and Hoheisel [8], the separation between time origins was
chosen at least as long as the VACF needs to decay to 1/e of its nor-
malized value. The choice of this separation time and the production phase
depended upon the temperature and density conditions. In theory, as
Eq. (4) shows, the value of the diffusion coefficient is determined by an
infinite time integral. In fact, however, the integral is evaluated based on
the length of the simulation. The integration must be stopped at some finite
time, ensuring that the contribution of the long-time tail [3] is small
compared to the desired statistical uncertainty of the diffusion coefficient.
Figure 1 shows the behavior of the VACF and its integral given by Eq. (4)
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Fig. 1. Large plot: Velocity autocorrelation functions. Small
plot: Integral following Eq. (4). Both plots are shown for
selected state points of argon: —— T=77.7 K and r=
163.26 mol · m−3; – – – – T=353.2 K and r=34.49 mol · m−3.

for two selected gas state points of argon. As can be seen, for the higher
density state point, the VACF has decayed after 500 ps to less than 1% of
its normalized value. Later it oscillates around zero. The same can be seen
after 1500 ps at the lower density state point. It was assumed here that the
VACF has fully decayed when these oscillations reached a threshold below
0.5% of their normalized value. Furthermore, a graphical inspection of the
VACF integral was made, in order to verify a sufficient integration time.

An important time scale to calculate the VACF is the time that a
sound wave takes to cross the simulation box. VACF calculated for times
higher than that may show a systematic error [32, 33]. That criterion was
verified using an experimental speed of sound [34]. For the simulations of
gases, the VACF decay time was found to be higher than that time. To
check whether this to leads to a systematic error in the present simulations,
the system size was varied. For the lowest density state point of argon,
where the above mentioned problem would be expected to be most severe,
simulations with a constant number of time origins and increasing system
sizes were carried out. System sizes of N=864, 2048, 4000, and 6912 mole-
cules were investigated. All results were found to agree within the statistical
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uncertainty, and no size dependence could be observed. It is therefore
concluded that no systematic error due to system size in gas-phase simula-
tions is present.

The Maxwell–Stefan diffusion coefficient is a collective quantity, and
therefore the statistics can only be improved by averaging over longer
simulation runs. The MS diffusion coefficients were calculated by averag-
ing over 2000 velocity correlation functions (VCF) as proposed by Schoen
and Hoheisel [8]. In order to obtain independent time origins, similar cri-
teria as employed for the self-diffusion coefficients were used to determine
the necessary length of the VCF.

3. RESULTS

3.1. Self-Diffusion Coefficients

Figure 2 shows the results for the self-diffusion coefficients of neon,
argon, and krypton compared with experimental data for gas state points
[34]. The lines in Fig. 2 are the results of the correlation of Liu et al. [35]

Fig. 2. Self-diffusion coefficients of neon, argon, and krypton
(gas phase) predicted by molecular simulation compared to exper-
imental data [34] at p=0.1013 MPa. neon: i exp., I sim.;
argon: g exp., G sim.; krypton: n exp., N sim. Solid lines repre-
sent the results of the correlation of Liu et al. [35].
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using the LJ parameters from Table I. The data are given at constant pres-
sure and at different temperatures. Figure 3 shows the results for the self-
diffusion coefficients for neon, argon, krypton, xenon, and methane
compared with experimental data [36–40] for liquid state points. The lines
in Fig. 3 are the results of the correlation of Liu et al. [35] using the LJ
parameters from Table I. The data are given at constant temperature and
at different pressures. Overall, very good agreement between the predic-
tions and the experimental data is found. The best results are found for
neon, argon, and krypton in the gas phase with deviations within a few
percent. The results for liquid state points show somewhat higher relative
deviations from the experimental data (around 10%). It can be seen that
the correlation agrees reasonably well with the simulation data; typical
deviations are about 5%. This accuracy lies in the range claimed by the
authors of Ref. 35.

Fig. 3. Self-diffusion coefficients of neon, argon, krypton,
xenon, and methane (liquid and gas phase) predicted by molec-
ular simulation compared to experimental data [36–40] at con-
stant temperatures and different pressures. neon T=37 K: i

exp., I sim.; argon T=323 K: g exp., G sim.; krypton
T=273 K: n exp., N sim.; xenon T=298 K: j exp., J sim.;
methane T=298 K: h exp., H sim. Solid lines represent the
results of the correlation of Liu et al. [35].
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3.2. Binary Maxwell–Stefan Diffusion Coefficients

Binary MS diffusion coefficients were calculated for the gaseous mix-
tures argon+krypton, argon+xenon, and krypton+xenon. The results are
compared to experimental Fick diffusion coefficients. The thermodynamic
factor Q, that relates the MS diffusion coefficient to the Fick diffusion
coefficient, cf. Eq. (6), is assumed to be unity for all cases studied here.
This is supported by the calculations of several authors [7, 8, 11, 41]. As a
test, Q was estimated by two simulations to calculate a finite difference
[42] for each mixture at the most dense state point. The assumption Q=1
was confirmed within the statistical uncertainty of the calculations.

Figure 4 shows the simulation results for the mixture argon+krypton
in comparison to experimental data taken from Ref. 43. The continuous
line in Fig. 4 gives the results of the correlation of Darken [27, 28]. In this
case, the experimental data [44] were reported at constant temperature.
Figure 5 shows the results for the mixtures argon+xenon and kryp-
ton+xenon at constant pressure. Good agreement between the predictions
and the experimental values is found. The best results are observed for the

Fig. 4. Binary Maxwell–Stefan diffusion coefficients for
gaseous equimolar mixtures of argon+krypton predicted by
molecular simulation compared to experimental data [43] at
T=323.16 K: argon+krypton g exp., G sim. Solid lines repre-
sent the results of the correlation of Darken [27, 28].
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Fig. 5. Binary Maxwell–Stefan diffusion coefficients for
gaseous equimolar mixtures of argon+xenon and krypton+
xenon predicted by molecular simulation compared to experi-
mental data at p=0.1013 MPa: argon+xenon: n exp., N sim.;
krypton+xenon h exp., H sim. Solid lines represent the results
of the correlation of Darken [27, 28].

mixture argon+krypton. This mixture shows typical relative deviations of
4% from the experimental data; the corresponding numbers are 8% for
argon+xenon and 16% for krypton+xenon. It must be pointed out that
for the mixture krypton+xenon, no binary interaction parameter t was
available.

In Figs. 4 and 5, it is interesting to analyze the performance of
the empirical model of Darken for estimating MS diffusion coefficients in
the gas phase on the basis of known binary self-diffusion coefficients. The
figures show that the model of Darken agrees very well with the binary MS
diffusion coefficients; typical deviations are about 5%.

4. CONCLUSION

In the present work, molecular models of simple fluids that were
adjusted to vapor-liquid equilibrium only were used to predict self and MS
diffusion coefficients. The diffusion coefficients were determined with
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molecular dynamics simulations using the Green–Kubo method. Five pure
fluids and three binary mixtures were studied covering a broad range of
state points. The fluids were modeled with the Lennard-Jones pair potential
with parameters taken from the literature. It is found that the prediction of
diffusion coefficients from vapor-liquid equilibrium data using that simple
model yields good results. This supports the finding that the spherical LJ
12-6 potential is an adequate description for the considered noble gases and
methane. When molecular models are adjusted to diffusion coefficient data,
excellent descriptions can be expected. It is worthwhile to extend the study
to more complex fluids.
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